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Abstract

This article examines the computation of square roots in ancient India
in the context of the discovery of positional decimal arithmetic.

1 Introduction

Our modern system of positional decimal notation with zero, together with
efficient algorithms for computation, which were discovered in India some time
prior to 500 CE, certainly must rank among the most significant achievements
of all time. As Pierre-Simon Laplace explained:

It is [in India] that the ingenious manner of expressing all numbers in
ten characters originated, by assigning to them at once an absolute and
a local [positional] value, a subtle and important conception, of which the
simplicity is such that we can [only] with difficulty, appreciate its merit.
But this very simplicity and the great facility with which we are enabled
to perform our arithmetical computations place it in the very first rank of
useful inventions; the difficulty of inventing it will be better appreciated if
we consider that it escaped the genius of Archimedes and Apollonius, two
of the greatest men of antiquity. [16, pg. 222–223]

In a similar vein, Tobias Dantzig (father of George Dantzig of simplex fame),
adds the following:

When viewed in this light, the achievement of the unknown Hindu who
some time in the first centuries of our era discovered the principle of posi-
tion assumes the proportions of a world-event. Not only did this principle
constitute a radical departure in method, but we know now that without it
no progress in arithmetic was possible. [5, pg. 29–30]

The Mayans came close, with a system that featured positional notation
with zero. However, in their system successive positions represented the mixed
sequence (1, 20, 360, 7200, 144000, · · · ), i.e., 18 · 20n−2 for n ≥ 3, rather than the
purely vigesimal (base-20) sequence (1, 20, 400, 8000, 160000, · · · ), i.e., 20n−1 for
n ≥ 1. This choice precluded any possibility that their numerals could be used
as part of a highly efficient arithmetic system [13, pg. 311].
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2 The discovery of positional arithmetic

So who exactly discovered the Indian system? Sadly, there is no record of this
individual or individuals, who would surely rank among the greatest mathe-
maticians of all time.

The earliest known piece of physical evidence of positional decimal notation
using single-character Brahmi numerals (which are the ancestors of our modern
digits) is an inscription of the date 346 on a copper plate, which corresponds to
595 CE. No physical artifacts are known earlier than this date [3, pg. 196]. But
there are numerous passages of more ancient texts that strongly suggest that
both the concept and the practice of positional decimal numeration was known
much earlier [19, pg. 122].

For example, a fifth century text includes the passage “Just as a line in the
hundreds place [means] a hundred, in the tens place ten, and one in the ones
place, so one and the same woman is called mother, daughter, and sister [by
different people]” [19, pg. 46]. Similarly, in 499 CE the Indian mathematician
Aryabhata wrote, “The numbers one, ten, hundred, thousand, ten thousand,
hundred thousand, million, ten million, hundred million, and billion are from
place to place each ten times the preceding” [4, pg. 21].

These early texts did not use Brahmi numerals, but instead used the Sanskrit
words for the digits one through nine and zero, or, when needed to match the
meter of the verse, used one of a set of literary words (known as “word-symbols”)
associated with digits. For example, the medieval Indian manuscript Surya
Siddhanta included the verse, “The apsids of the moon in a cosmic cycle are:
fire; vacuum; horsemen; vast; serpent; ocean.” Here the last six words are word-
symbols for 3, 0, 2, 8, 8, 4, respectively (meaning the decimal number 488,203,
since the order is reversed) [13, pg. 411].

One issue some have raised is that most ancient Indian documents are more
recent copies, so that we cannot be absolutely certain of their ancient authen-
ticity. But one manuscript whose ancient authenticity cannot be denied is the
Lokavibhaga (“Parts of the Universe”) [17]. This has numerous large numbers
in positional decimal notation (using Sanskrit names or word-symbols for the
digits), such as 14236713, 13107200000 and 70500000000000000, and detailed
calculations [17, pg. 70, 79, 131]. Near the end of the Lokavibhaga, the author
provides some astronomical observations that enable modern scholars to deter-
mine, in two independent ways, that this text was written on 25 August 458
CE (Julian calendar). The text also mentions that it was written in the 22nd
year of the reign of Simhavarman, which also confirms the 458 CE date. Thus
its ancient date is beyond question [13, pg. 417].

One even earlier source of positional word-symbols is the mid-third-century
CE text Yavana-jataka. Its final verse reads, “There was a wise king named
Sphujidhvaja who made this [work] with four thousand [verses] in the Indravajra
meter, appearing in the year Visnu; hook-sign; moon.” The three word-symbols,
“Visnu,” “hook-sign” and “moon,” mean 1, 9 and 1, signifying year 191 of the
Saka era, which corresponds to 270 CE [19, pg. 47].

The earliest record of zero may be in the Chandah-sutra, dated to the sec-
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ond or third century BCE. Here we see the solution to a mathematical problem
relating to the set of all possible meters for multi-syllable verse, which involves
the expression of integers using a form of binary notation [19, pg. 55]. The very
earliest origin of the notion of positional decimal notation and arithmetic, how-
ever, is still obscure; it may be connected to the ancient Chinese “rod calculus”
[19, pg. 48].

Additional details on the origin, proliferation and significance of positional
decimal arithmetic are given in [1].

3 Aryabhata’s square root and cube root

One person who deserves at least some credit for the proliferation of decimal
arithmetic calculation is the Indian mathematician Aryabhata, mentioned above
(see Figure 1). His ingenious digit-by-digit algorithms for computing square
roots and cube roots, based on terse statements in his 499 CE work Aryabhatiya
[4, pg. 24–26]), are illustrated by examples (due to the present authors) shown
in Figure 2. These schemes were used, with only minor variations, by Indian
mathematicians such as Siddhasena Gani (∼550 CE), Bhaskara I (∼600 CE),
Sridhara (∼750 CE) and Bhaskara II (∼1150 CE), as well as by numerous later
Arabic and European mathematicians [7, vol. I, pg. 170–175].

Figure 1: Statue of Aryabhata on the grounds of IUCAA, Pune, India (no one
knows what Aryabhata actually looked like) [courtesy Wikimedia]
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Tableau Result Notes
4 5 4 6 8 0 4 9 6 b

√
45c = 6

3 6 62 = 36
9 4 6 7 b94/(2 · 6)c = 7
8 4 7 · (2 · 6) = 84
1 0 6

4 9 72 = 49
5 7 8 6 7 4 b578/(2 · 67)c = 4
5 3 6 4 · (2 · 67) = 536

4 2 0
1 6 42 = 16

4 0 4 4 6 7 4 3 b4044/(2 · 674)c = 3
4 0 4 4 3 · (2 · 674) = 4044

0 9
9 32 = 9
0 Finished; result = 6743

Tableau Result Notes
7 7 8 5 4 4 8 3 4 b 3

√
77c = 4

6 4 43 = 64
1 3 8 4 2 b138/(3 · 42)c = 2

9 6 2 · (3 · 42) = 96
4 2 5

4 8 3 · 22 · 4 = 48
3 7 7 4

8 23 = 8
3 7 6 6 4 4 2 7 b37664/(3 · 422)c = 7
3 7 0 4 4 7 · (3 · 422) = 37044

6 2 0 8
6 1 7 4 3 · 72 · 42 = 6174

3 4 3
3 4 3 73 = 343

0 Finished; result = 427

Figure 2: Illustration of Aryabhata’s digit-by-digit algorithms for computing√
45468049 = 6743 (top) and 3

√
77854483 = 427 (bottom).
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4 The Bakhshali manuscript

Another ancient source that clearly exhibits considerable familiarity with deci-
mal arithmetic in general and square roots in particular is the Bakhshali manuscript.
This document, an ancient mathematical treatise, was found in 1881 in the vil-
lage of Bakhshali, approximately 80 kilometers northeast of Peshawar (then in
India, now in Pakistan). Among the topics covered in this document, at least in
the fragments that have been recovered, are solutions of systems of linear equa-
tions, indeterminate (Diophantine) equations of the second degree, arithmetic
progressions of various types, and rational approximations of square roots.

The manuscript appears to be a copy of an even earlier work. As Japanese
scholar Takao Hayashi has noted, the manuscript includes the statement “su-
tra bhrantim asti” (“there is a corruption in the numbering of this sutra”),
indicating that the work is a commentary on an earlier work [11, pg. 86, 148].

Ever since its discovery in 1881, scholars have debated its age. Some, like
British scholar G. R. Kaye, assigned the manuscript to the 12th century, in part
because he believed that its mathematical content was derivative from Greek
sources. In contrast, Rudolf Hoernle assigned the underlying manuscript to the
“3rd or 4th century CE” [12, pg. 9]. Similarly, Bibhutibhusan Datta concluded
that the older document was dated “towards the beginning of the Christian era”
[6]. Gurjar placed it between the second century BCE and the second century
CE [9].

In the most recent and arguably the most thorough analysis of the Bakhshali
manuscript, Japanese scholar Takao Hayashi assigned the commentary to the
seventh century, with the underlying original not much older [11, pg. 149].

4.1 The Bakhshali square root

One particularly intriguing item in the Bakhshali manuscript is the following
algorithm for computing square roots:

[1:] In the case of a non-square [number], subtract the nearest square
number; divide the remainder by twice [the root of that number]. [2:] Half
the square of that [that is, the fraction just obtained] is divided by the
sum of the root and the fraction and subtract [from the sum]. [3:] [The
non-square number is] less [than the square of the approximation] by the
square [of the last term]. (Translation is due to B. Datta [6], except last
sentence is due to Hayashi [11, pg. 431]. Sentence numbering is by present
authors.)
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4.2 The Bakhshali square root in modern notation

In modern notation, this algorithm is as follows. To obtain the square root of a
number q, start with an approximation x0 and then calculate, for n ≥ 0,

an =
q − x2

n

2xn
(sentence #1 above)

xn+1 = xn + an −
a2

n

2 (xn + an)
(sentence #2 above)

q = x2
n+1 −

[
a2

n

2 (xn + an)

]2

. (sentence #3) above)

The last line is merely a check; it is not an essential part of the calculation.
In the examples presented in the Bakhshali manuscript, this algorithm is used
to obtain rational approximations to square roots only for integer arguments q,
only for integer-valued starting values x0, and is only applied once in each case
(i.e., it is not iterated). But from a modern perspective, the scheme clearly can
be repeated, and in fact converges very rapidly to

√
q, as we shall see in the

next section.
Here is one application in the Bakhshali manuscript [11, pg. 232–233].

Problem 1 Find an accurate rational approximation to the solution of

3x2/4 + 3x/4 = 7000 (1)

(which arises from the manuscript’s analysis of some additive series).

Answer: x = (
√

336009 − 3)/6. To calculate an accurate value for
√

336009,
start with the approximation x0 = 579. Note that q = 336009 = 5792 + 768.
Then calculate as follows (using modern notation):

a0 =
q − x2

0

2x0
=

768
1158

, x0 + a0 = 579 +
768
1158

,

a2
0

2(x0 + a0)
=

294912
777307500

. (2)

Thus we obtain the refined root

x1 = x0 + a0 −
a2
0

2 (x0 + a0)
= 579 +

515225088
777307500

=
450576267588

777307500
(3)

(note: This is 579.66283303325903841 . . ., which agrees with
√

336009 = 579.66283303313487498 . . .
to 12-significant-digit accuracy).

The manuscript then performs a calculation to check that the original quadratic
equation is satisfied. It obtains, for the left-hand side of (1),

50753383762746743271936
7250483394675000000

, (4)
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Figure 3: Fragment of Bakhshali manuscript with a portion of the square root
calculation mentioned in Problem 1. For example, the large right-middle section
corresponds to the fraction 50753383762746743271936

7250483394675000000 in Formula (4). Graphic from
[11, pg. 574].

which, after subtracting the correction

21743271936
7250483394675000000

, (5)

gives,

50753383762725000000000
7250483394675000000

= 7000. (6)

Each of the integers and fractions shown in the above calculation (except the de-
nominator of (5), which is implied) actually appears in the Bakhshali manuscript,
although some of the individual digits are missing at the edges — see Figure
3. The digits are written left-to-right, and fractions are written as one integer
directly over another (although there is no division bar). Zeroes are denoted
by large dots. Other digits may be recognized by those familiar with ancient
Indian languages.

It is thrilling to see, in a very ancient document such as this, a sophisticated
calculation of this scope recorded digit by digit. And we are not aware, in the
Western tradition, of a fourth-order convergent formula being used until well
after the Enlightenment of the 1700s.
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5 Convergence of the Bakhshali square root

Note, in the above example, that starting with the 3-digit approximation 579,
one obtains, after a single application of (4.2), a value for

√
336009 that is cor-

rect to 12 significant digits. From a modern perspective, this happens because
the Bakhshali square root algorithm is quartically convergent — each iteration
approximately quadruples the number of correct digits in the result, provided
that either exact rational arithmetic or sufficiently high precision floating-point
arithmetic is used (although, as noted above, there is no indication of the al-
gorithm being iterated more than once in the manuscript itself). For example,
with q = 336009 and x0 = 579, successive iterations are as shown in Table 1.

Iteration Value Relative error
0 579.000000000000000000000000000000. . . 1.143× 10−3

1 579.662833033259038411439488233421. . . 2.142× 10−13

2 579.662833033134874975589542464552. . . 2.631× 10−52

3 579.662833033134874975589542464552. . . 5.993× 10−208

4 579.662833033134874975589542464552. . . 1.612× 10−830

5 579.662833033134874975589542464552. . . 8.449× 10−3321

6 579.662833033134874975589542464552. . . 6.371× 10−13282

7 579.662833033134874975589542464552. . . 2.060× 10−53126

Table 1: Successive iterations of the Bakhshali square root scheme for q =
336009 and x0 = 579.

The proof that iterates of the Bakhshali square root formula are quartically
convergent is relatively straightforward.

Theorem 1 The Bakhshali square root algorithm, as defined above in (4.2), is
quartically convergent.

Proof. It suffices to demonstrate that the scheme is mathematically equivalent
to performing two consecutive iterations of the Newton-Raphson iteration [2,
pg. 226–229] for finding the root of f(x) = x2 − q = 0, which are

xn+1 = xn +
q − x2

n

2xn
and (7)

xn+2 = xn+1 +
q − x2

n+1

2xn+1
. (8)
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Expanding the expression for xn+2, one obtains

xn+2 = xn +
q − x2

n

2xn
+
q −

(
xn + q−x2

n

2xn

)2

2
(
xn + q−x2

n

2xn

) (9)

= xn +
q − x2

n

2xn
+
q − x2

n − 2xn

(
q−x2

n

2xn

)
−

(
q−x2

n

2xn

)2

2
(
xn + q−x2

n

2xn

) (10)

= xn +
q − x2

n

2xn
−

(
q−x2

n

2xn

)2

2
(
xn + q−x2

n

2xn

) , (11)

which is the form of a single Bakhshali square root iteration. Since a single
Newton-Raphson iteration (7) for the square root (which is often referred to
as the Heron formula, after Heron of Alexandria ∼70 CE), is well-known to be
quadratically convergent, two consecutive iterations (and thus a single Bakhshali
iteration) are quartically convergent.

For completeness, we include a proof that the Newton-Raphson-Heron it-
eration, which is equivalently written xn+1 = (xn + q/xn)/2, is quadratically
convergent. Note that

xn+1 − xn =
q/xn − xn

2
=

q − x2
n

2xn
, and (12)

x2
n+1 − q =

(
xn + q/xn

2

)2

− q =
(
x2

n − q
2xn

)2

. (13)

By (13), xn ≥
√
q for all n ≥ 1, and by (12), xn is monotonically decreasing

for n ≥ 1. Then xn must converge to some limit r, and again by (12), r =
√
q.

Finally, (13) implies that

∣∣x2
n+1 − q

∣∣ ≤
∣∣x2

n − q
∣∣2

4q
, (14)

which establishes quadratic convergence, so that once the right-hand side is
sufficiently small, the number of correct digits approximately doubles with each
iteration.

The fact that the Bakhshali square root scheme is quartically convergent
when iterated has not been clearly recognized in the literature, to our knowl-
edge. G. R. Kaye, for instance, evidently presumed that the Bakhshali square
root is equivalent to and derived from Heron’s formula. He also claimed that
the Bakhshali square root scheme was extended to “second approximations”
in some instances, but this is not true—it was always implemented as stated
in the manuscript (see translation above). Also, Kaye erred in his arithmetic,
since the numerical value he gave for the

√
336009 result is only correct to four
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digits instead of 12 digits [15, pg. 30–31]. Similarly, Srinivasiengar stated that
the Bakhshali square root is “identical” to Heron’s formula, even though he
presented a mathematically correct statement of the Bakhshali formula that is
clearly distinct from Heron [20, pg. 35]. Hayashi and Plofker correctly observed
that the Bakhshali scheme can be mathematically derived by twice iterating
the Newton-Raphson-Heron formula, although neither of them discussed con-
vergence rates when the scheme is iterated [11, pg. 431] [18, pg. 440].

We might add that Heron’s formula was known to the Babylonians [8], al-
though, as with the Bakhshali formula, it is not clear that the Babylonians ever
iterated the process. As to the source of the Bakhshali scheme, Hayashi argues
that it may be based either on the Aryabhata square root scheme or on an
ancient Heron-like geometric scheme described in the Sulba-sutras (between 600
BCE and 200 CE) [11, pg. 105-106].

6 An even more ancient square root

There are instances of highly accurate square roots in Indian sources that are
even more ancient than the Bakhshali manuscript. For example, Srinivasiengar
noted that the ancient Jain work Jambudvipa-prajnapti (∼300 BCE), after er-
roneously assuming that π =

√
10, asserts that the “circumference” of a circle

of diameter 100,000 yojana is 316227 yojana + 3 gavyuti + 128 dhanu + 13 1/2

angula, “and a little over” [20, pg. 21–22]. Datta added that this statement is
also seen in the Jibahigama-sutra (∼200 BCE) [6, pg. 43]. Joseph noted that
it also seen in the Anuyogadvara-sutra (∼0 CE) and the Triloko-sara (∼0 CE)
[14, pg. 356].

According to one commonly used ancient convention these units are: 1 yo-
jana = 14 kilometers (approximately); 4 gavyuti = 1 yojana; 2000 dhanu = 1
gavyuti; and 96 angula = 1 dhanu [14, pg. 356]. Converting these units to yo-
jana, we conclude that the “circumference” is 316227.766017578125 . . . yojana.
This agrees with 100000

√
10 = 316227.766016837933 . . . to 12-significant-digit

accuracy!
What algorithm did these ancient scholars employ to compute square roots?

Here we offer some analysis, which might be termed an exercise in “forensic
paleo-mathematics”:

First, note that the exact value of 100000
√

10 is actually slightly less than
the above, even though the ancient writers added the phrase “and a little over”
to the listed value that ends in 13 1/2. Also, we can justifiably infer that the
underlying target value (most likely a fraction) was less than the given value
with 13 3/4 at the end, or presumably it would be listed with 14 instead of
13 1/2. Thus, a reasonable assumption is to take a slightly larger value, say
13 5/8 (the average of 13 1/2 and 13 3/4) at the end, as a closer approximation of
the underlying fractional value. Now let us compare the corresponding decimal
values, together with the results of a Newton-Raphson-Heron iteration (starting
with 316227), a Bakhshali iteration (starting with 316227), and the exact result:
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Manuscript value, with 13 1/2 316227.76601757812500 . . .
Manuscript value, except with 13 5/8 316227.76601774088541 . . .
One Heron iteration (316227) 316227.76601776571892 . . .
One Bakhshali iteration (316227) 316227.76601683793319 . . .
Exact value of 100000

√
10 316227.76601683793319 . . . .

Comparing these values, it is clear that the manuscript value, with 13 5/8

at the end, is very close to the result of one Newton-Raphson-Heron iteration,
but is 36 times more distant from the result of either Bakhshali iteration or
the exact value (note that the value of the Bakhshali iteration, starting with
316227, is identical to the exact result, to 20-significant-digit accuracy). Thus,
the most reasonable conclusion is that the Indian mathematician(s) did some
preliminary computation to obtain the approximation 316227, then used one
Newton-Raphson-Heron iteration to compute an approximate fractional value,
and then converted the final result to the length units above. Evidently the
Bakhshali formula had not yet been developed.

Along this line, R. C. Gupta analyzed the Triloya-pannatti, an Indian doc-
ument dating to the between the fifth and tenth century CE, which gives the
“circumference” above expressed in even finer units. Gupta concluded, as we
did, that the result was based on a calculation using the Newton-Raphson-Heron
formula [10].

Note that just to perform one Newton-Raphson-Heron iteration, with start-
ing value 316227, one would need to perform at least the following rather de-
manding calculation:

x1 =
1
2

(
x0 +

q

x0

)
=

1
2

(
316227 +

100000000000
316227

)
=

1
2

(
3162272 + 100000000000

316227

)
=

99999515529 + 100000000000
2 · 316227

=
199999515529

632454
= 316227 +

484471
632454

, (15)

followed by several additional steps to convert the result to the given units.
By any reasonable standard, this is a rather impressive computation, which we
were surprised to find evidence for in manuscripts of this ancient vintage (200-
300 BCE). Numerous other examples of prodigious computations in various
ancient Indian sources are mentioned by Datta [7], Joseph [14], Plofker [19]
and Srinivasiengar [20]. Although some impressive calculations are also seen
in ancient Mesopotamia, Greece and China, as far as we are aware there are
more of these prodigious calculations in ancient Indian literature than in other
ancient sources.

In any event, all of this analysis leads to the inescapable conclusion that
ancient Indian mathematicians, roughly contemporaneous with Greeks such as
Euclid and Archimedes, had command of a rather powerful system of arithmetic,
possibly some variation of the Chinese “rod calculus,” or perhaps even some
primitive version of decimal arithmetic. We can only hope that further study
of ancient Indian mathematics will shed light on this intriguing question.
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7 Conclusion

We entirely agree with Laplace, Tobias Dantzig, Georges Ifrah and others that
the discovery of positional decimal arithmetic with zero, together with efficient
algorithms for computation, by Indian mathematicians (who likely will never
be identified), certainly by 500 CE and probably several centuries earlier, is a
mathematical development of the first magnitude. The fact that the system
is now taught and mastered in grade schools worldwide, and is implemented
(in binary) in every computer chip ever manufactured, should only enhance
its historical significance. Indeed, these facts emphasize the enormous advance
that this system represents, both in simplicity and efficiency, as well as the huge
importance of this discovery in modern civilization.

It should be noted that these ancient Indian mathematicians missed some key
points. For one thing, the notion of decimal fraction notation eluded them and
everyone else until the tenth century, when a rudimentary form was seen in the
writings of the Arabic mathematician al-Uqlidisi, and the twelfth century, when
al-Samawal illustrated its use in division and root extraction [14, pg. 468]. Also,
as mentioned above, there is no indication that Indian mathematicians iterated
algorithms for finding roots.

Aside from historical interest, does any of this matter? As historian Kim
Plofker notes, in ancient Indian mathematics, “True perception, reasoning, and
authority were expected to harmonize with one another, and each had a part
in supporting the truth of mathematics.” [19, pg. 12]. As she neatly puts
it, mathematics was not “an epistemologically privileged subject.” Similarly,
mathematical historian George G. Joseph writes:

A Eurocentric approach to the history of mathematics is intimately con-
nected with the dominant view of mathematics, both as a sociohistorical
practice and as an intellectual activity. Despite evidence to the contrary,
a number of earlier histories viewed mathematics as a deductive system,
ideally proceeding from axiomatic foundations and revealing, by the nec-
essary unfolding of its pure abstract forms, the eternal/universal laws of
the “mind.”

The concept of mathematics found outside the Graeco-European praxis
was very different. The aim was not to build an imposing edifice on a
few self-evident axioms but to validate a result by any suitable method.
Some of the most impressive work in Indian and Chinese mathematics...,
such as the summations of mathematical series, or the use of Pascal’s
triangle in solving higher-order numerical equations or the derivations of
infinite series, or “proofs” of the so-called Pythagorean theorem, involve
computations and visual demonstrations that were not formulated with
reference to any formal deductive system. [14, pg. xiii]

So this is why it matters. The Greek heritage that underlies much of Western
mathematics, as valuable as it is, may have unduly predisposed many of us
against experimental approaches that are now facilitated by the availability of
powerful computer technology [2]. In addition, more and more documents are
now accessible for careful study — from Chinese, Babylonian, Mayan and other
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sources as well. Thus a renewed exposure to non-Western traditions may lead
to new insights and results, and may clarify the age-old issue of the relationship
between mathematics as a language of science and technology, and mathematics
as a supreme human intellectual discipline.
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